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This paper surveys some of the methods that have been suggested for reducing noise in time-
series data whose underlying dynamical behavior can be characterized as low-dimensional chaos.
Although the procedures differ in details, all of them must solve three basic problems: how to
reconstruct an attractor from the data, how to approximate the dynamics in various regions on the
attractor, and how to adjust the observations to satisfy better the approximations to the dynamics.
All current noise-reduction methods have similar limitations, but the basic problems are reasonably
well understood. The methods are an important tool in the experimentalist’s repertoire for data
analysis. In our view, they should be used more widely, particularly in studies of attractor dimension,

Lyapunov exponents, prediction, and control.

PACS number(s): 05.45.+b

I. INTRODUCTION

Noise limits one’s ability to extract quantitative infor-
mation from time-varying signals. In many cases, one is
interested in a time series of data produced by a system
whose underlying behavior can be characterized as low-
dimensional chaos. Two important measures associated
with the dynamics are the dimension of the attractor
(which describes approximately the number of degrees of
freedom) and the Lyapunov exponents (which quantify
the sensitivity of the process to initial conditions).

There is much literature on physical systems that ex-
hibit chaotic behavior and on methods for estimating the
dimension of an attractor reconstructed from time-series
data (see, for instance, the papers in [1,2]). Algorithms
for estimating Lyapunov exponents have been described
by Wolf et al. [3] and by Eckmann et al. [4], among oth-
ers.

Both the dimension and the Lyapunov exponents de-
scribe a kind of scaling behavior in the limit as the dis-
tances between points on the attractor approach zero
[5]. Each of them is sensitive to the presence of small
amounts of noise. Simple numerical experiments show
that a noise level of 1% of the time-series extent makes
it impossible to measure the correlation dimension of the
attractor using distances less than 3% of the attractor
extent [6]. Noise in laboratory data may completely ob-
scure the underlying fractal structure unless the data are
preprocessed to reduce the noise [7].

There are several aspects to the noise-reduction prob-
lem. One question concerns the circumstances under
which low-pass filtering and similar methods are justi-
fied for the analysis of chaotic laboratory data. Another
question involves ways in which the dynamics can be used
to identify and correct errors in the observations arising
from noise, at least in cases where the behavior of the
process can be characterized as low-dimensional chaos.
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Different approaches have been suggested to the latter
question. Examples include Kostelich and Yorke [6,8],
Schreiber and Grassberger [9], Sauer [10], Cawley and
Hsu [11], and Farmer and Sidorowich [12].

We do not want to attempt a quantitative compari-
son of these noise-reduction methods. Instead, it is our
opinion that the methods have important similarities—
indeed, one can view them as variations on a common
theme. All of the methods must address three basic prob-
lems: (1) they must have a strategy for reconstructing
the underlying attractor from the observed time series;
(2) they must estimate the local dynamical behavior by
choosing a class of models and fitting the parameters sta-
tistically; and (3) they must adjust the observations to
make them more consistent with the models. For this
reason, all of the methods have similar advantages and
shortcomings. Nevertheless, the various methods per-
form well in many cases. In our opinion, experimentalists
and others should take advantage of these ideas in their
analysis of data.

In the next section, we summarize briefly one popular
method for reconstructing an attractor from a time series
of data and show how noise complicates the problem of
computing the dimension of the attractor. We discuss
improved embedding theorems in Sec. III and show how
the effects of noise can be reduced with better embedding
methods. In Sec. IV, we discuss how to approximate the
dynamics using the data. We show how the observations
can be adjusted to reduce noise in Sec. V and consider
error measures in Sec. VL.

II. THE EFFECT OF NOISE:
AN EXAMPLE USING TIME-DELAY
EMBEDDINGS

The first step in any analysis of chaotic data is to re-
construct an attractor from the data. This is the em-
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bedding problem, which can be summarized briefly as fol-
lows. Suppose one has an apparatus whose behavior can
be described in principle by a set of differential equa-
tions. There might be a large number of equations, and
one might not know exactly what they are. (For exam-
ple, the Belousov-Zhabotinskii chemical reaction exhibits
complex dynamics and more than 30 intermediate chem-
ical species have been identified in it. However, many
of the associated rate constants are not known [13,14].)
After a time, the system reaches an asymptotic state in
which the behavior is governed by the attractor A for the
underlying set of equations. The experimental data are
functions of points on A. The embedding problem is the
following: given a time series of measurements {s;}, how
can a set be reconstructed that is equivalent in an ap-
propriate mathematical sense to A? In particular, there
should be a one-to-one correspondence between points
on A and points on the reconstructed attractor, and in-
formation about the derivatives of the flow should be
preserved.

The Takens time-delay-embedding method [15] is prob-
ably the most common attractor reconstruction method
in the literature. (We discuss other strategies in Sec. III.)
Given the time series {s;}, the reconstructed attractor
consists of the m vectors

X; = (si7 SitTy Sit+2r5- - si+(m~1)'r) ’

where 7 is the time delay and m is the embedding dimen-
ston. Takens showed that if the embedding dimension is
sufficiently large, then the set {x;} has the same dimen-
sion and Lyapunov exponents as the original attractor for
“most” choices of the time delay [15]. (We give a more
precise statement below.)

One of the oldest applications of time delay embed-
dings is to the estimation of the dimension of the attrac-
tor. There are many notions of dimension; see [7] and
the references therein for more details. In some sense,
the dimension describes the number of degrees of free-
dom associated with the dynamics.

One popular definition is the correlation dimension,
introduced by Grassberger and Procaccia [16]. Suppose
the reconstructed attractor consists of N points. Let
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where P(e, N) is the number of pairs of points on the
attractor whose distance apart is less than €. Then C(¢)
is a number between 0 and 1. In the limit as € — 0 and
N — oo, and in the absence of noise, we have C(€) ~ €9,
where d is the correlation dimension of the attractor.

In practice, the finite number of data points and noise
in the data place a lower bound on the values of € that
can be used to estimate d. Typically, one computes C/(€)
for each € in a decreasing sequence. The dimension d
is estimated by using linear regression over a range of
(lne,InC(€)) pairs. One can compare the scaling re-
lations over various ranges by performing the linear re-
gression over different subsets of the €¢’s and looking for
consistent values of d.

Ideally, the values for d should be relatively constant

for a large interval of € values. For example, if C(€) has
been computed for a decreasing sequence of 30 values of ¢,
one might perform the linear regression over the largest
five €’s to get an estimate d(eq, ..., €s5) of the dimension.
One could repeat the calculation using the second largest
five €’s to get J(Eg, ...,€g), and so on. In this way, one
would get estimates of the derivative d[ln C(e)]/d(ln€).

In a good experimental data set, one might find reason-
ably constant values of d for € ranging from 10% down to
1% or less of the attractor extent. However, a “plateau”
in the values of d often is not apparent. The values of d
may yield a plot that is qualitatively similar to Fig. 1.

In their analysis of weak turbulence in a Couette-
Taylor fluid flow experiment, Brandstater and Swinney
[17] tried to estimate the correlation dimension over var-
ious ranges of € and divided their plot into four regions
labeled A-D, as shown in Fig. 1. In region A the lack of
data points is the dominant feature. Therefore, the val-
ues of d are subject to large fluctuations and cannot be
used to estimate the dimension reliably. The behavior in
region B is attributed to the noise, which “smears out”
the fractal structure below a certain level of resolution.
One wants to see the behavior in region C for as large a
range of € values as possible. The behavior in region D
reflects the lack of scale invariance since € is of the order
of the size of the entire attractor.

The data in Fig. 1 consist of a time series of 40 000 val-
ues from a laser experiment by Flepp and co-workers [18].
The curves illustrate attempts to estimate the correlation
dimension of the data before and after a nonlinear noise-
reduction method was applied. The region labeled C on
each curve corresponds to an approximate power-law re-
lationship between the correlation C(€) defined in Eq. (1)
and the ball size €. Before noise reduction (represented
by diamonds), a scaling region is difficult to discern, be-
cause the noise obscures the fine scale structure up to
1/16 of the attractor extent. A wide range of estimates
of the attractor dimension are possible with the noisy
data, depending on the range of € used. In this example,
it is difficult simply to determine whether the process
is low dimensional using only the noisy data. Hence,
even small levels of noise significantly complicate esti-
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FIG. 1. A typical plot of correlation dimension as a func-
tion of the range of distances ¢ used to estimate the scaling
exponent. Noise obscures the fine scale structure up to 1/16
of the attractor extent, making an accurate estimate of the
attractor dimension impossible.
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mates of dimension, a quantity that in principle should
be straightforward to measure.

A similar situation arises in the estimation of Lya-
punov exponents. In his numerical study of the Lorenz
equations, Abarbanel [19] found that the negative Lya-
punov exponent cannot be determined when the noise
level is as small as 10™%, and none of the exponents can
be determined with satisfactory precision in the presence
of 1% noise. This is true even if the minimum required
embedding dimension is known. (Higher embedding di-
mensions lead to the additional problem of spurious neg-
ative exponents.)

Although dimension estimation provides an illustra-
tive example, there are many other applications in which
noise is a serious concern. The ability to calculate accu-
rate approximations to the dynamics allows one to make
short-term predictions of the process [20-23] or to de-
termine small changes to an accessible system parameter
in order to stabilize the process around a saddle peri-
odic orbit. (The so-called control of chaos is a subject of
considerable recent interest [24].) Obviously, noise limits
one’s ability to estimate the dynamics, and a good noise-
reduction procedure is essential in such applications.

ITII. NOISE REDUCTION
AND EMBEDDING TECHNIQUES

A. Generalizations of the Takens embedding
theorem

The Takens time-delay-embedding method discussed
in the preceding section is one of several approaches to
the problem of attractor reconstruction. A fundamental
objective is to find a reconstruction of the attractor that
minimizes the effects of noise in the input time signal.

Casdagli et al. [25] consider notions of distortion and
noise amplification in attractor reconstruction. Because
of the noise, each point in an m-dimensional time-delay
reconstruction of the attractor can be regarded as a ran-
dom m vector. The mean of the underlying density is a
nearby “true” vector if the noise has mean zero and is
uncorrelated with the signal. Their objective is to try to
choose the time delay in such a way that the variance
of the random observations around the true state does
not have unacceptably large components along regions of
interest on the attractor.

Sauer, Yorke, and Casdagli [26] have proved impor-
tant generalizations of the Takens time-delay-embedding
theorem which are especially relevant to the analysis of
experimental data. Their work justifies the use of filter-
ing in the reconstruction of attractors to reduce the effect
of noise. In the rest of this section, we summarize their
main results and related work.

An embedding is a reconstruction for which there is
a one-to-one mapping to the original attractor that pre-
serves information about the derivatives of the original
flow. This implies that an embedding produces a re-
constructed set with the same dimension and Lyapunov
exponents as the original attractor.

The Takens embedding theorem asserts that a one-to-
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FIG. 2. (a) No small perturbation of the reconstruction
function eliminates the self-intersection in the limit cycle. (b)
Although the limit cycle intersects itself, arbitrarily small per-
turbations will remove the self-intersection.

one mapping exists for a generic set of time delays, pro-
vided that the embedding is done in enough dimensions.
How many are necessary?

Suppose that the input time series is periodic (a sine
wave, for instance). Dynamically this corresponds to a
limit cycle, which can be embedded in two dimensions.
However, in a two-dimensional Takens time-delay recon-
struction, the measurement function may produce a self-
intersecting limit cycle, as shown in Fig. 2(a). No small
perturbation of the measurement function removes the
self-intersection. It is still possible for the curve to inter-
sect itself in three dimensions, but there is a set of arbi-
trarily small perturbations to the measurement function
that produce a one-to-one mapping between the under-
lying attractor and its reconstruction.

This example provides a heuristic motivation for the
rigorous result proved by Sauer, Yorke, and Casdagli
[26]: if the box-counting dimension [27] of the attractor
is d, then m dimensions suffice to produce an embedding,
where m > 2d. For a limit cycle (d = 1), three dimen-
sions are sufficient. In fact, almost every reconstruction
in three dimensions avoids a self-intersection of the sort
depicted in Fig. 2(b). This notion of probability one can
be made precise in a way that will not be discussed here
(see [26] for details). Moreover, typical choices of time
delay are likely to produce an embedding. (In the exam-
ple of a limit cycle, one has an embedding unless the time
delay is an integer multiple of the period of the signal.)

An embedding preserves characteristic quantities such
as the dimension. This does not mean that reliable es-
timates of these numbers can be extracted from a given
data set because different reconstructions are not equally
sensitive to noise and sparse data.

B. Noise reduction with filtered embeddings

The Takens time-delay-embedding method, although
popular, is not the only way to reconstruct an attractor.
Suitable linear combinations of input time series values
can reduce the noise in the reconstructed attractor. Let

Si
Sit+1
x;=B| . ()
Sitw—1

where B is an m X w matrix. This sequence of vectors
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produces an embedding if the rank of B is sufficiently
large and if B does not collapse periodic points of the
underlying attractor of integral period less than or equal
to w [26]. For example, B can be chosen to yield a Fourier
embedding (e.g., w = 64 and m = 16, so that each point
on the reconstructed attractor is a suitably truncated fast
Fourier transform of a window of 64 time-series values).
Sauer [10] has shown that this “low-pass” embedding can
be used to preprocess data with 100% additive Gaussian
noise. i

Broomhead and King [28] have suggested the use of sin-
gular value analysis to reconstruct the attractor. (This
is an alternative choice for B.) One can choose a win-
dow of the original time series and project it onto the
subspace spanned by the corresponding singular vectors.
Heuristically, each window of the time series is projected
onto the subspace that contains the largest fraction of the
total variance of the data. The remaining orthogonal di-
rections presumably contain most of the noise. (See [28]
for details.) Albano et al. [29] used a similar procedure to
reduce the noise and estimate the Grassberger-Procaccia
dimension of the attractor reconstructed from time-series
data. Other applications of singular value decomposition
to noise reduction are described in later sections.

Another alternative is to use a Takens time-delay re-
construction after applying a suitable filter to the entire
time series. For example, one can compute the power
spectrum of the input signal, make some assumptions
about the frequency distribution of the noise, remove
or suppress those frequency components, and invert the
transform. This is the idea behind traditional bandpass
filters (see [30] for a concise description of the Wiener
filter).

Traditional filters work well in situations where most
of the noise is restricted to certain frequencies. However,
the time series of many chaotic signals have broadband
components [31,17]. Thus bandpass filters will cause dis-
tortion because some of the suppressed frequency compo-
nents are part of the dynamics. If it is not done carefully,
bandpass filtering can fail to give an embedding. If infi-
nite input response filters are used, the dimension of the
reconstructed set may deviate considerably from that of
the original attractor. See [32] for details.

Despite these caveats, we recommend the use of these
preprocessing methods because they can reduce the noise
significantly. The numerical algorithms are widely avail-
able and easily implemented, even on small computers.
It is often desirable to try different attractor reconstruc-
tions from the same data because the methods distort
regions of interest on the attractor in different ways. De-
pending on the application, one reconstruction may be
better than another.

C. Multiple-probe measurements

Multiple redundant measurements can be exploited to
reduce noise. For example, several measurements can be
taken during the fundamental period of a driven system,;
several devices can be operated simultaneously (e.g., ve-
locity data can be taken at several nearby locations in a

flow) [33] or the data can be taken at time intervals that
are short compared to the correlation time of the signal
(oversampling).

Suppose there are L probes and at time i we record
sﬁl), e, sgL). Each of the L time series contains the same
dynamical information and comparable amounts of noise
(we assume the measurement errors are independent).
The series with the largest variance has the smallest rel-
ative noise level (highest signal-to-noise ratio). Follow-
ing the above considerations about embeddings, almost

. . o L (k)
every nonsingular linear combination V; = Y, ars;
contains the same information about the dynamics. (One
need not restrict attention to linear combinations of the
time series for attractor reconstruction, but they are con-
venient.)

A useful strategy is to pick the linear combination
which has the highest signal-to-noise ratio. It can be
found by maximizing the variance of the V; subject to
the constraint 25:1 a? = 1. The requisite vector is
the eigenvector corresponding to the largest eigenvalue
of the L x L covariance matrix I' whose (k,[)th entry is
Tr = (s®) sy — (s()) (s where the angular brackets
denote the average value over all time steps 7. This pro-
cedure is similar to the singular value decomposition and
is also called principal component analysis [34].

IV. MODELING DYNAMICS FROM DATA

The embedding methods described in the preceding
section are useful preprocessing tools. However, they are
linear methods applied to portions of the time series that
are restricted in either the time or frequency domain.
They do not exploit the underlying dynamical behavior
to identify and correct errors in the observations.

The objective of every noise-reduction method is to
find a simpler dynamical system that is consistent with
the data. There are three aspects to the problem: (1) the
nature of the noise, (2) the class of models to be fitted
using a statistical method, and (3) the adjustment of the
observations to be more consistent with the model. We
discuss these in turn in the following subsections.

A. Measurement error and dynamical noise

Measurement noise refers to the corruption of obser-
vations by errors which are independent of the dynam-
ics. The dynamics satisfy x; = f(x;_1), but we measure
x; + m;. [More typically, the measurements consist of
scalars s; = h(x;) + 6;, where h is a smooth function that
maps points on the attractor to real numbers and the §;
are independent and identically distributed random vari-
ables.] Dynamical noise, in contrast, is a feedback pro-
cess wherein the system is perturbed by a small random
amount at each time step:

x; = f(xi—1 + mi-1). (3)

Dynamical and measurement noise are two notions of
the error that may not be distinguishable a posteriori
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based on the data only. Both descriptions can be consis-
tent to some extent with the same signal. The shadowing
problem addresses the question of whether there is a tra-
jectory near the observed one, possibly for a different
nearby initial condition or for a slightly different map.

Suppose the system contains dynamical noise and that
there is a map f near f in some metric for which x; =
f(xi_1),i=1,...,n. Then the observations can be con-
sidered as the exact output of the unknown but slightly
different map f, or they can be considered as the noisy
output from the known map f. Often one of the two
points of view permits a simpler description than the
other. For instance, if we detect correlations between §;
and x;,, for some 7, then we can reject the hypothesis
that the noise arises from independent measurement er-
rors. Provided that the series does not contain ezactly the
same phase-space point twice, we can construct a smooth
function that interpolates between all measured points;
relative to this function, the data form a noise-free orbit.

Strictly speaking, it is not necessary to think of this
problem only in terms of separating a deterministic sig-
nal from some random fluctuations. It is possible that
the “noise” might arise from a high-dimensional, deter-
ministic dynamical system. The noise-reduction prob-
lem therefore is a question of how to separate the low-
dimensional dynamics from a complex signal. This re-
quires one to choose a class of models for the dynamics
and to fit a model to the data in the regions of interest
on the attractor. The following sections describe some
approaches to this problem.

B. Time ordering and estimation of the dynamics

The overall objective of noise-reduction methods is to
find a simple dynamical system that is consistent with
the data. Therefore, one must find an approximation to
the dynamics from a class of models and adjust the ob-
servations to satisfy the dynamical approximations bet-
ter. Although these two steps are not independent of
each other, we will discuss them separately, pointing out
along the way where they overlap.

A basic problem is how to exploit the time ordering of
the data to produce a more self-consistent trajectory and
reduce the noise. Suppose that m dimensions suffice to
reconstruct the attractor. In principle, one can write

Sm+1 = f(sh'- L) Sm) + Mmt1 (4)

where 7),,,4+1 denotes a noise term and the s; are the time
series values (possibly preprocessed using the methods
outlined above). The subscripts denote the time order-
ing of the data; i.e., s;41 is the observation immediately
following s;. We call Eq. (4) a forward-in-time represen-
tation of the dynamics. The prediction problem consists
of finding an approximation f of f to get an estimate
§m+1 of Sm+1, viz. §m+1 = f(Sl, ey Sm).

Typically, an ensemble of nearby trajectories is used to
find f from a class of models. In some sense, §,,41 can be
regarded as a “maximum likelihood” estimate of s,,1.

This produces a naive (but unsatisfactory) scheme for
noise reduction: start with the first m time-series values.
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Output a prediction $,,,41 for s,,4+1. Next, use the origi-
nal observations s, ..., S;,+1 to determine §,,42, and so
on. This scheme adjusts all.but the first m time-series
values.

Can this process be iterated to reduce the noise? That
is, if we take the output from the first run and use it as
the input to a second run, will the resulting time series
be less noisy? The answer is no if the underlying time
series is chaotic, because errors in s1, . . ., s,, typically are
amplified due to the sensitivity to initial conditions. For
the same reason, the output time series drifts away from
the original. (The same is true if we write s; as a function
of the succeeding m observations and work backwards in
time.)

One approach which largely avoids this problem was
suggested by Schreiber and Grassberger [9]. We review
it here to outline the main ideas; a refinement of their
procedure is described in a later section. The objective
of the procedure is to use past and future values to adjust
one or more observations in the middle. Let

OZF(Sla'--vsm,Sm+l)+77m+l (5)

express the functional dependence of past and future val-
ues up to a noise term. If m dimensions suffice to embed
the attractor, then any one of the observations in Eq. (5)
is an implicit function of the others. We call Eq. (5) an
implicit representation of the dynamics. Schreiber and
Grassberger [9] use a linear approximation for F' to find
the least-squares estimate

m+1

Smiz= », arsk+b (6)

k=1
(k#m/2)
for the value in the middle of the sequence. This method
uses information from both the future and the past to
adjust the observations.

The map is determined in the following way. Given
S1y-.-,8m+1, one locates several closely matching se-
quences of m + 1 observations. The middle value in each
sequence is expressed as a linear combination of the oth-
ers as in Eq. (6). The coefficients (except for a,,/;) are
determined from a least-squares fit. Notice that the co-
efficient a,,/, must be excluded to prevent a trivial fit
(wherein ap = 0 for k # m/2 and a,,/2 = 1).

In a similar way, one can use ss, ..., Sym42 to determine
a new set of coeflicients to get an estimate 5,34, for
the next output point, and so on to the end of the time
series. This procedure adjusts all but the first and last
m/2 values. The output is a less noisy time series if the
linearization in Eq. (6) is an accurate approximation of
the dynamics.

Because past and future values are used at each step,
the procedure can be iterated without the rapid drift
due to the sensitive dependence on initial conditions.
(One must be careful to avoid especially large correc-
tions, which can arise because the linearization is a poor
approximation of the dynamics or because of occasional
“glitches” in the data.) Schreiber and Grassberger’s
method is straightforward to program, runs quickly on
a desktop workstation, and can reduce the noise by a
factor of 10 in some cases [9].
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Schreiber [35] proposed a very simple variant of the
above method which gives stable results especially for
very short and noisy data: the linear approximation (6)
is replaced by a constant, which can be determined with
much less data. The resulting algorithm can be coded in
a few lines and is quite efficient.

C. Eckmann-Ruelle linearization

One can work directly with each m-dimensional point
on the reconstructed attractor to determine a local lin-
ear approximation of the dynamics. As above, the sub-
script denotes the time ordering of the data: x;; is the
point immediately following x; in time. The dynamics
are given by x;4; = f(x;) for an unknown function f.

One assumes that f is at least piecewise differentiable
and considers a low-order polynomial expansion of f.
Eckmann and Ruelle [36] suggested that the local lin-
ear approximation f(Xef) = AX;er + b can be computed
from the data using least squares. Here A is an approxi-
mation of the Jacobian matrix of partial derivatives of f
evaluated at X;ef.

Suppose that x;.f has k neighbors within a suitably
small neighborhood U. Linear regression is used to find
the matrix A and vector b that minimize the sum of
squares 37, [|x;+1 — (Ax; + b)||?, where the sum runs
over all 1nd71ces J such that x; € U. A different A and b
are computed for each neighborhood on the reconstructed
attractor.

The noise reduction scheme described in Kostelich and
Yorke [6] uses Eckmann-Ruelle linearization to approx-
imate the dynamics at each point on the reconstructed
attractor. To avoid the drift due to the sensitivity on
initial conditions discussed above, it must be followed by
a separate trajectory adjustment step in which a nearby
time series is computed that is more consistent with the
linearization of the dynamics at each point. (This is out-
lined in Sec. V.)

There are several difficulties with this kind of func-
tion approximation that have been considered in detail
n [37]. Two of the more important considerations are
the following: (1) The accuracy of the approximation de-
pends on how well a linear map describes the dynamics.
Some regions of the attractor may contain few observa-
tions. A larger ball size increases the number of available
points but makes nonlinearities more prominent. This
situation becomes more common as the dimension of the
attractor increases. (2) The linear least-squares proce-
dure produces biased estimates of the matrix A and vec-
tor b because errors in measurement are present in all
the observations; i.e., there is error in both the original
points {x;} and their successors {x;;1}. Ordinary least
squares produces unbiased estimates only when the er-
rors are confined to the latter set.

It is difficult to make general statements about the ef-
fect of these problems in practice. Much depends on the
dimension of the attractor, the number of data points,
the noise level, etc. Nevertheless, Eckmann-Ruelle lin-
earization has useful applications both in noise reduction
and Lyapunov exponent estimation.

D. Local projective maps

An alternative approach uses geometrical considera-
tions to reduce the noise. Since the reconstructed attrac-
tor is a subset of a smooth manifold in an m-dimensional
phase space, one can estimate the local tangent plane
at each point with singular value decomposition. Let
{x:}¥_, be the set of all points in a small neighborhood
of some reference point with mean %, and let X be the
k X m matrix whose ith row is x; — X. Then

X =UTzv (7)

where the columns of U and V form an orthonormal ba-
sis for the columns and rows of X, respectively [38]. The
entries o; of the diagonal matrix ¥ are the singular values
of X: they are the non-negative square roots of the eigen-
values of the covariance matrix X7X. (The decomposi-
tion can be arranged so that 0y > 03 > -+ > 0, > 0.)
The sum 0% + --- + 02, equals the total variance in the
observations x; [38]. The columns of the orthonormal
matrix V are the corresponding singular vectors.

The noise spreads out the observations in all directions,
but most components lie along a lower-dimensional hy-
perplane through x. The components in the remaining
orthogonal directions presumably are mostly noise. Thus
one can ask how many dimensions account for a certain
fraction of the total variance. For example, if p is the
integer such that 0% + --- + 02 is about 95% of the total
variance, then the span of the first p singular vectors is a
good approximation to the tangent plane of the attrac-
tor in a neighborhood of x. (Obviously, the observations
must lie in a small ball for this to be true. Whether one
considers 95% of the variance or some other fraction de-
pends upon the estimated underlying noise level. See [39]
for details.)

Cawley and Hsu [11] and Sauer [10] suggested that
noise in the observations can be reduced by projecting
the observations onto the subspace spanned by a suit-
able collection of singular vectors at each point on the
attractor. (Alternatively, instead of projecting each ob-
servation directly onto the subspace, one can move the
observation only part of the way. This minimizes possi-
ble corruption of the data due to a poor approximation
to the tangent plane.)

Figure 3 is a schematic diagram of the process. The
method is purely geometric; the time ordering of the data
is not used to compute the map.

X

ref

FIG. 3. Schematic diagram of the noise-reduction process
in one dimension using singular value decomposition. The line
P is the span of the first singular vector. The ellipse indicates
that noise spreads out the observations in a neighborhood of
the reference point. The reference point (and possibly some
nearby points) are projected orthogonally onto P in order to
reduce the noise.
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When the attractor is reconstructed using a Takens
time-delay embedding, the projections typically produce
m different corrections for each time series value. Thus it
is necessary to incorporate a trajectory adjustment step
to compromise between the projections.

E. Local projections with constraints

Grassberger et al. [40] have considered a more general
procedure in which the projective maps and the correc-
tions to the observations are computed in one step as
part of a least-squares minimization problem. Like the
projective method above, this method circumvents the
problem of biased estimates of derivatives arising from
errors in all of the observations and obviates a separate
trajectory adjustment step. In addition it exploits the
time ordering of the data in a clever way. Figure 4 was
obtained using the method described in this section; see
[41] for the parameters used.

As above, one assumes that when the embedding di-
mension m is higher than strictly necessary, the obser-
vations can be projected onto a d-dimensional manifold,
which is assumed to be approximately linear in a suitably
small neighborhood of the reference point. Thus the com-
ponents of each observation that lie in a g-dimensional
subspace perpendicular to the tangent plane of the man-
ifold are zeroed out by the projection, where ¢ = m — d.

However, Grassberger et al. [40] suggested that the
projection should be done in such a way that changes
are made only to a central block of coordinates in each
observation. (In three dimensions, only the middle value
of each observation would be adjusted. If m = 7, then
one might try to project the middle three observations
while leaving the first two and last two essentially un-
changed.) Large corrections to coordinates at the end
of each observation will propagate due to the sensitive
dependence on initial conditions. Similarly, large correc-
tions in the first few coordinates will grow in backwards
time. Hence this method uses information from the fu-
ture and past dynamics to find the best correction to the
middle coordinate values. When only the middle value of
each observation is adjusted, the method becomes very
similar to the one by Schreiber and Grassberger discussed
in Sec. IV B.

Let Xref = (Siy-..,5m) be an (m + 1) vector whose
coordinates are consecutive values from the input time

®)

- — e

sp Sn

FIG. 4. Enlargements of phase portraits of the Ziirich
NMR laser data (same data as in Fig. 1): (a) unprocessed
data, (b) the same region after noise reduction with con-
strained projections (Sec. IVE). This is a case where the
phase portrait shows effective noise reduction.

series. (We assume that the attractor can be embedded
in m or fewer dimensions.) As above, we let U denote
a suitably small neighborhood of x,es. The components
of each x; € U correspond to portions of nearby trajec-
tories on the reconstructed attractor, each of which lies
on a manifold of dimension m — ¢q. An implicit func-
tional relationship between the components of each x;
is defined by F(x;) = 0, where F is a vector function
with ¢ components. (This can be regarded as a set of g
constraints.)

The relation F is assumed to be approximately linear
in U. For each observation x; € U, one seeks a vec-
tor ;, an (m + 1) X ¢ matrix A and a g-vector b such
that (1) AT(x; + 6;) +b = 0; (2) ATPA = I; and (3)
Y. 07 P~'6; is a minimum, where the sum is over all the
points in U. The corrections 6;, the matrix A, and the
vector b can be computed in a single minimization prob-
lem. The matrix P is a fixed (m + 1) x (m + 1) diagonal
weight matrix. The entries of P are chosen to penalize
large corrections to the first and last few coordinates of
each point in the neighborhood. The columns of A are
the eigenvectors corresponding to the ¢ smallest eigenval-
ues of the weighted covariance matrix of the observations.
Additional details are given in [40].

Intuitively, the columns of A form an orthogonal basis
for a subspace that is perpendicular to the tangent plane
of the manifold containing the observations. One seeks
the smallest corrections that project each point onto the
tangent plane, but distances are measured with a metric
determined by the weight matrix P [40]. (The columns
of A are not an orthonormal basis for the perpendicular
subspace unless P is the identity matrix, in which case
the method becomes identical to the one by Cawley and
Hsu discussed above.)

Finally, we note that a similar approach, in which a
local linear approximation and the adjustments to the
observations are computed in one step, was outlined in
[37] for cases where the observations are near saddle pe-
riodic orbits.

F. Global function fits and other methods

Global models try to find one function f which gives
the best fit to f, where the sum of squares is taken over
all the data. A classical method is to express f as a linear
combination of a set of k£ basis functions:

k
F=>" a1 (8)
j=1

The coefficients «a; are then chosen to minimize the
rms approximation error, which is a linear optimization
problem that can be solved by standard techniques. A
popular choice of functions 1; (at least in the context
of chaotic dynamics) are radial basis functions [42,43]:
P;(x) = ¢(|lc; — x]|). All basis functions thus have the
same functional form and are distinguished only by the
different center points c¢;. A variety of choices is possi-
ble for ¢(r): examples include Gaussian functions, ex-
ponential functions, low-order polynomials, and rational
functions. The coefficients usually are obtained by mini-
mizing
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E? = %Z [si+m+1 — f(si,.. -,Si+m)]2

where the sum runs over all the time series values in
the data set. The numerical method of choice for this
least-squares problem is singular value decomposition;
see Press et al. [30].

The success of the method depends on the appropriate
choice of the form of the basis functions (like the width of
the Gaussian functions whenever they are used). In ad-
dition, one needs a strategy for choosing the centers c;
and a criterion for deciding how many basis functions are
required. More basis functions leads to closer approxima-
tions of the input time series. Of course the original map
f is not known, so as more centers are chosen we model
more details of the noisy data. When the number of basis
functions equals the number of input points, we have an
interpolation between all the observations: the interpola-
tion is exact on the observations, the noise is interpreted
as part of the dynamics, and the function f cannot be
used for trajectory adjustment. More material on radial
basis-function approximation can be found in [21,42,44].

Another method of global nonlinear function approx-
imation is the modulation by neural networks. In expe-
rienced hands they have proven capable of learning non-
linear functions useful for time-series analysis. Weigend,
Huberman, and Rumelhart [45] successfully applied this
technique to predict sunspot numbers. Neural networks
were used successfully in a recent Santa Fe Institute time
series prediction contest [23], but the performance of
the different networks varied widely. Further references
about function approximation by neural networks can be
found in [46].

Genetic algorithms under certain circumstances can
learn to make predictions [47], but so far seem of limited
use for noise reduction. They do not make predictions
for every reference point, but only for certain regions in
phase space.

Although global function fits have some appeal, the
choice of basis functions induces some bias. For instance,
the accuracy of the dynamical approximations at each
point on the attractor depends in a nontrivial way on
both the shape of the basis functions, the distribution of
the centers, and the curvature of the trajectories. In the
case of neural nets the nature of this bias is unknown.
The main advantage of global models is that they can
provide stable fits even for small amounts of data.

Finally we remark that straightforward global ap-
proximations work mainly for forward-in-time fits as in
Eq. (4). In many cases the dynamical equations cannot
be solved globally to give a unique value for coordinates
other than s,,t1, even when the map is invertible. For
example, the Hénon map is s3 = 1 — as? + bs;. If we try
to solve for s; we obtain sy = ++/1 + bs; — s3/a, which
usually has two branches. On a noisy orbit the square
root can even become imaginary.

V. TRAJECTORY ADJUSTMENT

Every noise-reduction method requires some strategy
to adjust the observations to respect the dynamics more

closely. Two requirements must be fulfilled by the new
orbit: it should be more consistent with the estimated
dynamics than the original signal and it should remain
close to the original signal. (In cases where a Takens
time-delay embedding is used to reconstruct the attrac-
tor, the observations should be adjusted so that the out-
put is a scalar time series.)

Usually the new orbit is obtained as the result of some
optimization procedure. It is not possible to satisfy all
the criteria simultaneously, so one must make compro-
mises in any particular algorithm. For example, a given
point on the attractor may belong to several neighbor-
hoods. Hence, different maps could be used to adjust the
point, each of which moves the point in a different way.
An open question concerns the best way to reconcile all
the possible adjustments.

A. One-step methods

The trajectory adjustment step is trivial if the dy-
namics are represented according to the Schreiber-
Grassberger scheme in Eq. (6). The central coordinate
Sm,2 is well controlled in both the stable and the unsta-
ble directions on the attractor, because past and future
values are used to adjust it. Thus the estimate Sm/2
can be taken as a replacement for the observed value.
The value of the coefficient a,,;; must be fixed between
0 and 1 to avoid a trivial least-squares problem. Hence
a smaller value can be used to lend more weight to the
dynamics, and a value closer to 1 can be used to obtain
smaller corrections. The method automatically yields a
scalar signal when the attractor is reconstructed with a
Takens time-delay embedding.

Only slightly more work is needed in the constrained
projective procedure described in Sec. IV E. In this case,
proposed corrections are obtained for all components of
the observations instead of a single central coordinate.
In a Takens time-delay embedding, the same scalar mea-
surement appears as a coordinate in several vectors, so
the different proposed corrections can be averaged to-
gether. (See [40] for more details.) The same considera-
tions apply to the geometric method of Cawley and Hsu
[11] and Sauer [10].

B. Two-step methods

Forward-in-time reconstructions require an explicit
nontrivial adjustment step, particularly when the attrac-
tor is reconstructed using Takens time-delay embeddings.
Some methods require the new orbit to fulfill the dynam-
ics exactly. This is reasonable when the dynamics are
known with high accuracy. Algorithms of Hammel [48]
and Farmer and Sidorowich [12] are examples in this cat-
egory. When the map is known, it is possible to refine
trajectories to arbitrarily high precision.

This is not the case in laboratory situations because
the dynamics must be estimated from noisy data. In-
stead, one must minimize the deviation from the indi-
vidual adjustments subject to the constraint that the
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FIG. 5. Consider a noisy one-dimensional set. In the absence of curvature (a), the mean of the corrections is zero. If the
underlying manifold is curved (b), projection onto the fitted straight line yields a nonzero mean correction, which can be

subtracted to come closer to the desired tangent.

distance from the original orbit must not be too large.
Kostelich and Yorke [6] sought the trajectory {&i+x}h_,
that minimizes the sum of squares

p
D ik — FFirre-)1? + wliFirr — xivrll?
k=0

H[Rir w1 — FGirn) I (9)

where f denotes the estimated dynamics at each point.
Equation (9) expresses the idea that the distances should
be small between each fitted point and its preimage, each
fitted point and the original observation, and the fitted
point and its image. Since their method uses a Takens
time-delay reconstruction of the attractor, the minimiza-
tion in Eq. (9) is done so that the output consists of a
sequence of scalar values. The distances between each
point and its image are weighted twice as heavily as the
distance to the original observation when the parameter
w is set to 1. Larger values of w may be appropriate in
cases where the input contains large, isolated errors in
the data so that the trajectory is not moved excessively
to accommodate an occasional erroneous observation.

The minimization problem is more complicated if the
model f is not a piecewise linear function. Strategies
for this case have been discussed by Davies [49]. If the
nonlinear minimization problem is solved by gradient de-
scent, the weight w can be absorbed into the stepsize for
the descent.

We remark that no matter how the sum of squares in
Eq. (9) is minimized, the Jacobian of f must be avail-
able. (This is trivial for piecewise linear approximations
of the dynamics.) In contrast, the one step methods de-
scribed above do not need the Jacobian function. This
can make one-step methods numerically more robust. For
instance, errors in the coefficients computed using the
method of Schreiber and Grassberger are not important
as long as they predict s,/ reasonably well. The method
of Kostelich and Yorke depends more sensitively on the
linear maps because they are also used for trajectory ad-
justment.

C. Recommended improvements

In this section we mention some modifications which
were omitted from the description of the algorithms for
clarity. Their implementation is not required in order to
reduce the noise in most cases, but they can enhance the
performance of the methods considerably.

All of the noise-reduction methods occasionally may
make anomalously large corrections to an observation.
This happens mainly at points where the stable and un-
stable manifolds are almost tangential. They can also be
caused by singular least-squares fits or by a large, isolated
error in the data. Since it is not possible to determine
the underlying problem with an automatic computer pro-
gram, most implementations restrict the maximum size
of any correction. Kostelich and Yorke [6] did not alter
such points at all, but simply flagged them in the out-
put. Alternatively, such points can be moved only some
fraction of the computed distance; these observations can
be corrected gradually in subsequent iterations over the
data set.

Locally linear and projective models introduce errors
due to the presence of small nonlinearities, such as the
curvature of the attractor. This can be detected because
the curvature error is systematic and makes the mean of
the corrections nonzero. Forcing the corrections to all
points in a small neighborhood to have zero mean par-
tially compensates for this. Sauer [10] proposed this mod-
ification, which becomes particularly important when one
attempts to remove very small noise levels and curva-
ture errors dominate. Figure 5 illustrates how curvature
causes a nonzero mean correction. If this trend is sub-
tracted, the linear approximation approaches the desired
tangential form (dashed line).

VI. HOW MUCH NOISE IS TAKEN OUT?

This is a fundamental question. The answer depends
partly on the assumptions one makes about the nature
of the noise in the input signal. Two error measures
have been used for the development of algorithms. When
the noise-free signal is known, the error in the input and
output is given by the rms distance between the data s;
and the original noise free signal s?:

N 1/2
_(1 02
E0-<N;(si—si)> .

A similar quantity Eo can be computed for the cleaned
data §;. If Ey < Ey, then the noise has been reduced.
A slightly weaker error measure can be computed when
the exact dynamical evolution equation x) = f(x) ;) is
known. It measures the deviation from deterministic be-
havior according to the equation
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L 1/2
Eayn = (N Dl — f(xi—l)llz) :
=1

As before, the dynamical error can be compared before
and after the noise-reduction procedure has been applied.

These are natural measures when the original trajec-
tory or the “true” dynamics are known. However, other
points of view are possible. For example, the output
from a noise-reduction scheme might be considered as a
cleaner set of data for a slightly different value of the
parameter. It is also possible for a noise-reduction pro-
cedure to translate the data slightly, resulting in large
values for Egy,. Nevertheless, the data might still be
regarded as a less noisy realization of the dynamics in
slightly different coordinates.

The main disadvantage of these quantities is that in a
typical experimental situation neither the noise-free data
nor the exact dynamics is known. Thus we must employ
criteria which are accessible given only the data. Fig-
ure 4 shows an example where the processed data “looks
less noisy,” but we need a more objective, quantitative
criterion.

One reasonable assumption is that the data are com-
posed of a deterministic part plus random noise. Thus
we can measure the success of noise-reduction algorithms
by testing whether the signal has become more determin-
istic and the subtracted noise is random. Sections VI A
and VIB outline methods to test this assumption.

A. Correlation sums

A widely used tool for detecting and quantifying low-
dimensional behavior is the correlation sum C" defined
in Eq. (1). This quantity is used to estimate the corre-
lation dimension d of an attractor. Here we are inter-
ested in the scale-dependent effective dimension d(e) =
d[InC(€)]/d(ln€). For an infinite amount of noiseless
data, d = lim._,¢ d(€).

For laboratory data, this scaling of interpoint distances
exists only over a finite range of length scales. As pointed
out in Sec. II, the scaling breaks down for larger distances
(region D in Fig. 1). At small scales two effects can be
seen. When points become sparse, the effective dimen-
sion of the attractor fluctuates wildly and no scaling is
found (region A). If enough pairs are still found with
a distance smaller than the noise level, one measures an
effective dimension d(e) that is close to the dimension of
the whole phase space (usually given by the embedding
dimension, region B).

If the data set is too short, then region B may not be
observable because points become sparse at or above the
noise level. This implies that it is not possible to gather
enough information on small scales to determine whether
a point is displaced by noise and to correct the error. In
this case, nonlinear noise reduction tends to break down.

If there are enough points, one finds a crossover region
between the noise dominated length scales (region B)
where d(€) equals the embedding dimension and the “cor-
rect” scaling (region C) where d(¢) =~ d. The length scale
at which this crossover occurs is proportional to the noise

level. (For Gaussian noise, this observation can be quan-
tified [50].) If one succeeds in reducing the noise in a
chaotic time series, then this region is pushed to a smaller
scale, as seen in Fig. 1. In the best case, the region is
reduced to a scale where spareseness is the dominating
effect.

B. Prediction error

If a noise-reduction procedure successfully removes
most of the noise, then the processed data set should have
better short-term predictability then the raw data set.
In other words, the data should be more self-consistent.
This can be quantified by computing the out-of-sample
prediction error with some nonlinear predictor before and
after noise reduction. In the simplest case, the data are
split into two parts, one of which must be long enough
to fit a nonlinear mapping f(x). (One can use the same
maps as in the noise reduction itself, but this does not
have to be the case.) The prediction error

1/2
N /

E,,:Ni >

P {=N—-Np+1

ll%; — £(xi—1) |

is computed over the remaining IV, data points. It is es-
sential to take the out-of-sample error because one can
always find a mapping which yields zero in-sample pre-
diction error simply by interpolating between the data
points.

If the data set is too short to be split into two suf-
ficiently long parts, then take-one-out statistics can be
used to obtain an out-of-sample error [7,51]. For each
reference point x;, a predictor f; is fitted using all the
data in the neighborhood except x;. The resulting map

f; is used only to predict x;. In this way, one obtains

N 1/2
1 a 2
Ep = (F D lixs — Ei(xio)l )
=1

as an estimate of the out-of-sample prediction error. This
error measure is computed before and after noise reduc-
tion. (More material on error measures for nonlinear
time-series prediction can be found in [22,23].)

Three effects contribute to the one-step prediction er-
ror in low-dimensional chaotic systems.

(1) The observed value x; is contaminated by noise,
inducing an error proportional to the noise level.

(2) The data values used as arguments of the predic-
tion function are contaminated with noise, leading to an
error approximately proportional to the noise level. The
proportionality constant is determined by the Jacobian
determinant of f.

(3) The fitted prediction function is only an approxi-
mation to the true dynamics. The accuracy of the fit can
be a complicated function of the noise level.

For dissipative maps, effect (1) usually dominates (2).
The size of effect (3) is mostly unknown. However, we ex-
pect the deviation of the predictor from the true dynam-
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ics to increase monotonically with the noise level. In the
presence of all three effects, E, will increase faster than
linearly with the noise level. If we compare E, before and
E'p after noise reduction we only obtain an upper bound

on the amount of noise reduction. However, if Ep < E,,
then the data have been rendered more self-consistent.

C. Power spectra

Chaotic data are characterized by broadband power
spectra [31,17]. Thus it is generally not possible to reduce
noise in such data using methods based on power spectra.
However, there are cases where signal and noise can be
readily distinguished in some part of the spectrum, for
example, at high frequencies or around a dominant fre-
quency. Nonlinear noise-reduction methods should sup-
press noise throughout the spectrum, and their effects
also should be visible in these places.

Let us take densely sampled flow data as an exam-
ple. High-frequency noise can be removed with a simple
low-pass filter. Nonlinear noise-reduction methods tend
to suppress the high frequencies as well. However, some
of the high frequencies are part of the dynamics. Non-
linear noise-reduction methods also can remove some of
the lower-frequency noise that is not part of the dynam-
ics. Such distinctions cannot be made with a low-pass or
Wiener filter [6].

We do not recommend the power spectrum as a mea-
sure of the amount of noise reduction in chaotic time-
series data, because it is essentially a linear method. As
we discuss below, however, the power spectrum is a use-
ful characterization of the corrections applied to the in-
put data. Most nonlinear methods have limiting cases
where they behave like linear filters (for example, when
large neighborhoods are used to fit in local linear mod-
els or when inappropriate basis functions are used to
fit global models). Successful nonlinear noise reduction
should make sure we do not pick one of these cases.

D. Consistency tests

So far we have only described tests which can be ap-
plied to the cleaned signal in order to check whether it
is likely to be low-dimensional deterministic chaos. If
the input data consist of uncorrelated noise added to a
deterministic signal, then the corrections applied to the
data should resemble a random process. One can ex-
ploit all that is known about the sources of noise in the
data. In most cases, it has only short correlation times.
The spectrum will not always be flat, but if it has un-
expected features, then one must consider whether the
method used to process the data is appropriate.

For example, it is a good idea to check the distribu-
tion of the corrections to the data. Measurement errors
are expected to have a normal distribution, whereas dis-

cretization errors are uniformly distributed in [0,277 7]
if the data are stored as r-bit integers.

In addition, one should look for cross correlations be-
tween the signal and the corrections. They should be
small if the noise-reduction procedure has successfully
removed random measurement errors. Significant cross
correlations can arise for different reasons, including some
threshold in the measurement device, fluctuations in the
scale of measurement (“multiplicative noise”), varying
noise levels in different regions of the phase space, and
corruption of the data due to an inappropriate noise-
reduction method.

VII. CONCLUSIONS

The basic problems involved in the analysis of chaotic
time-series data are reasonably well understood. Several
methods for reducing noise are available, provided that
the underlying dynamics are low dimensional. The un-
derlying attractor can be reconstructed from the data in
several possible ways, some of which can act as linear
filters to lower the noise level.

More sophisticated noise-reduction methods are avail-
able which exploit the local dynamical behavior to iden-
tify and correct errors arising from noise. A variety of
methods exists for estimating the dynamics. One-step
methods, such as those suggested by Grassberger and co-
workers [7,40], adjust the observations as part of the pro-
cess of determining a local linear model for the dynamics.
Projective schemes, such as that implemented by Cawley
and Hsu [11], move the observations onto a subspace that
approximates the tangent plane to the manifold contain-
ing the attractor at each point. Kostelich and Yorke [6,8]
compute an estimate of the Jacobian matrix of partial
derivatives of the map at each point on the attractor.

Trajectory adjustment refers to the process by which
the input data are changed to be more consistent with
the estimated dynamics. Although the true dynamics
are not known in most experimental situations, there are
several ways to measure the self-consistency of the data
and to check whether the noise level has been reduced.

Even low levels of noise can complicate the estima-
tion of basic quantities such as attractor dimension and
Lyapunov exponents. For this reason, the use of noise-
reduction methods is strongly recommended in any anal-
ysis of chaotic time-series data.
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